مشتق تابع
اگر نقطهای از نمودار تابع و نقطهٔ دیگری از این نمودار باشد، آنگاه و شیب خط قاطع عبارت است از:
کسر فوق، خارج قسمت تفاضلی در نامیده میشود. اگر ثابت نگه داشته شود و به سمت صفر میل کند، آنگاه خارج قسمت تفاضلی در اگر فقط به بستگی داشته باشد به مقداری میل میکند که به آن شیب خط مماس گفته میشود. به عبارت دیگر، حاصل حد زیر در صورت وجود ضریب زاویهٔ خط مماس نمودار تابع در را بدست میدهد:
تعریف مشتق تابع
برای تابع که در همسایگی نقطهٔ تعریف شدهاست، اگر وجود داشته باشد، در مشتقپذیر است. این حد یکتا را با نمایش داده و آن را مشتق تابع در نقطهٔ مینامند.
بر طبق این تعریف، مقدار مشتق برابر نرخ تغییرات مقدار تابع است زمانی که تغییرات مربوط به متغیر مستقل به سمت صفر میل میکند.
با تبدیل به تعریف دوم مشتق به صورت زیر حاصل میشود:
نمادهای مشتق
لایبنیتس، نیوتون، لاگرانژ، آربوگاست و اویلر هر یک نماد جداگانهای را برای نمایش مشتق بکار میبردند؛ اما در میان پیشگامان اولیهٔ آنالیز ریاضی، لایبنیتس بیش از هر کس دیگری به اهمیت علامات مناسب پی برده بود. او علامات را با حوصلهٔ زیادی آزمایش میکرد و با سایر ریاضیدانان مکاتبات بسیاری داشت و از این طریق معایب و محاسن نمادهای مختلف را برای آنها مطرح میساخت. پیشرفت حساب دیفرانسیل و انتگرال و گسترش ریاضیات نوین تا حدود زیادی بواسطهٔ علامتهای پیشرفتهای است که بسیاری از آنها توسط لایبنیتس ابداع شدهاند.
لایبنیتس در سال ۱۶۷۵ میلادی با استفاده از عملگر تفاضلی خارج قسمت تفاضلی را به شکل } نوشت و برای مشتق تابع در نماد را معرفی کرد که به صورت نیز نوشته میشود. این نماد که نمایش دیفرانسیلی مشتق نامیده میشود، برای نمایش مشتق مراتب بالاتر به شکل نوشته میشود. با استفاده از این نماد تعریف مشتق به صورت در میآید.
نیوتون برای نشان دادن مشتق اول از و برای مشتق دوم از استفاده میکرد. نمادهای نقطهدار نیوتون در برخی مسائل فیزیکی مانند سرعت و شتاب بکار میروند.
مشتق تابع را با نیز میتوان نشان داد. این نماد بر آن تأکید دارد که تابع جدیدی است که با مشتقگیری از تابع بدست آمدهاست و مقدارش در با نموده میشود. مختصات و واقع بر نمودار با معادلهٔ به هم مربوط میشوند، و علامت نیز برای نمایش بکار میرود که مقدارش در به صورت نوشته میشود. این نماد در سال ۱۷۷۰ میلادی توسط ژوزف لویی لاگرانژ مورد استفاده قرار گرفت و مشتق مراتب بالاتر را به صورت (مشتق اول)، (مشتق دوم)، (مشتق سوم)، (مشتق چهارم) (مشتق ام) نشان میدهد.
در سال ۱۸۰۰ میلادی نماد دیگری توسط لوییس آربوگاست معرفی شد و توسط لئونارد اویلر مورد استفاده قرار گرفت. این نماد مشتق را به شکل نشان میدهد. علامت یک عملگر دیفرانسیلی است و این فکر را القا میکند که تابع جدیدی است که با مشتقگیری از بدست آمدهاست. مشتق مراتب بالاتر به صورت و مقدار آن در به صورت نوشته میشود.
مشتقهای یک طرفه
مشتق راست: اگر تابع در فاصلهٔ تعریف شده باشد آنگاه حاصل حد زیر، در صورت وجود، مشتق راست تابع در میباشد:
مشتق چپ: اگر تابع در فاصلهٔ تعریف شده باشد آنگاه حاصل حد، زیر در صورت وجود، مشتق چپ تابع در میباشد:
مشتقپذیری
تابع در مشتقپذیر است هرگاه در این نقطه پیوسته باشد و مشتق چپ و راست تابع با هم برابر و مساوی یک عدد حقیقی معین باشد.
تعبیر هندسی مشتقپذیری: تابع در مشتقپذیر است هرگاه بتوان در این نقطه یک خط کامل مماس و غیر موازی با محور yها بر منحنی رسم کرد.
اگر تابع در نقطهٔ مشتقپذیر باشد، آنگاه در آن نقطه پیوسته نیز هست.
ولی عکس قضیهٔ فوق صحیح نمیباشد یعنی ممکن است تابع پیوسته باشد اما مشتقپذیر نباشد؛ به عبارت دیگر، پیوستگی تابع در شرط لازم برای مشتقپذیری تابع است، نه شرط کافی. پس اگر تابع در ناپیوسته باشد، آنگاه در مشتقپذیر نیست.
موارد مشتقناپذیری
مواردی که تابع در نقطهٔ مفروض مشتقپذیر نیست:
- نقاط ناپیوسته: تابع در نقاط ناپیوسته مشتقناپذیر است و از دید هندسی نمیتوان در این نقاط مماس بر منحنی رسم کرد.
- نقاط زاویهدار: تابع در نقاط پیوستهای که مشتق چپ و راست در آنها دو عدد حقیقی نابرابر، یا یکی عدد و دیگری بینهایت باشد، مشتقپذیر نیست. از دید هندسی، در این نقاط دو نیممماس بر منحنی رسم میشود که با هم زاویه میسازند.
- نقاط عطف قائم: تابع در نقاط پیوستهای که مشتق چپ و راست در آنها بینهایتهای همعلامت باشد مشتقناپذیر است. از دید هندسی، در این نقاط میتوان یک خط کامل مماس به موازات محور yها رسم کرد. نقطهٔ عطف قائم تنها نقطهای است که تابع در آن مشتقپذیر نیست ولی مماس کامل دارد.
- نقاط بازگشت: تابع در نقاط پیوستهای که مشتق چپ و راست در آنها بینهایتهای غیر همعلامت باشد مشتقناپذیر است. از دید هندسی، در این نقاط میتوان یک نیممماس، به موازات محور yها رسم کرد.
- تابع در نقاطی که پیوستهاند ولی مشتق در آنها به سمت عدد مشخصی میل نمیکند نیز مشتقناپذیر است. از دید هندسی، در این نقاط نمیتوان مماس مشخصی بر منحنی رسم کرد.
دامنهٔ تابع مشتق
منظور از دامنهٔ تابع مشتق مجموعهٔ نقاطی است که تابع در آنها مشتقپذیر است. به طور کلی برای تابع داریم:
- مجموعه نقاطی که در آن تعریف نشده است
مشتق تابع نسبت به تابع
هرگاه بخواهیم مشتق یک تابع مانند را نسبت به تابع دیگری مانند بدست آوریم، کافی است مشتق این توابع را نسبت به متغیرشان محاسبه نموده و سپس برهم تقسیم کنیم.
مشتق توابع پارامتری
توابع که به فرم هستند را توابع پارامتری مینامند. در این حالت، مشتق نسبت به از رابطهٔ زیر قابل محاسبه است:
مشتق تابع مرکب
اگر تابع در نقطهٔ و تابع در مشتقپذیر باشد، آنگاه تابع نیز در مشتقپذیر است و داریم:
به بیان دیگر، هرگاه تابعی از و تابعی از باشد، برای بدست آوردن مشتق نسبت به ، مشتق نسبت به را در مشتق نسبت به ضرب میکنیم.
همچنین به شکل دیگری برای توابع و داریم:
مشتق توابع زوج و فرد
مشتق هر تابع زوج، تابعی فرد است و مشتق هر تابع فرد، تابعی زوج است.
اگر تابعی زوج و موجود نباشد ولی و موجود باشند آنگاه خواهیم داشت:
اگر تابعی فرد و موجود نباشد ولی و موجود باشند آنگاه خواهیم داشت:
پادمشتق
اگر تابعی پیوسته در بازهٔ شامل نقطهٔ باشد، آنگاه تابع با دامنهٔ و با ضابطهٔ:
تابع اولیه یا پادمشتق تابع نامیده میشود. تابع روی مشتقپذیر است و برای هر داریم:
آنگاه مشتق تابع از رابطهٔ زیر بدست میآید:
قسمتی از تدریس استاد آریان حیدری در محصول مشتق ۲:
اگر فیلم بالا را به صورت آنلاین نمی توانید نگاه کنید نرم افزار adobe flash را از اینجا دانلود و بر روی کامپیوترتان نصب نمایید تا از این به بعد فیلم ها را به صورت آنلاین تماشا کنید
و یا اگر می خواهید این فیلم آموزشی را دانلود کنید و همیشه آن را بر روی کامپیوترتان داشته باشید اینجا کلیک نمایید.
برای تسلط بیشتر روی مبحث مشتق گیری به شما عزیزان فیلم آموزشی زیر را توصیه می کنیم: